![]() |
ERDDAP
Easier access to scientific data |
Brought to you by NOAA NMFS SWFSC ERD |
Dataset Title: | sg651-20250901T0000
![]() ![]() |
Institution: | Ensenada Center for Scientific Research and Higher Education and Gulf of America Ocean Observing System (GCOOS) (Dataset ID: sg651-20250901T0000) |
Information: | Summary ![]() ![]() ![]() |
To view the counts of distinct combinations of the variables listed above,
check View : Distinct Data Counts above and select a value for one of the variables above.
Distinct Data
(Metadata)
(Refine the data subset and/or download the data)
wmo_id | trajectory | profile_id | time | latitude | longitude |
---|---|---|---|---|---|
UTC | degrees_north | degrees_east | |||
8901006 | sg651-20250429T0 | 1756742937 | 2025-09-01T16:08:57Z | 18.868731469300567 | -87.25125123488876 |
8901006 | sg651-20250429T0 | 1756743452 | 2025-09-01T16:17:32Z | 18.869739341460193 | -87.25253324124418 |
8901006 | sg651-20250429T0 | 1756745607 | 2025-09-01T16:53:27Z | 18.874170390460662 | -87.25876886322754 |
8901006 | sg651-20250429T0 | 1756746281 | 2025-09-01T17:04:41Z | 18.876771495310948 | -87.26029879791051 |
8901006 | sg651-20250429T0 | 1756748696 | 2025-09-01T17:44:56Z | 18.885975796375178 | -87.26725675569455 |
8901006 | sg651-20250429T0 | 1756749891 | 2025-09-01T18:04:51Z | 18.89034070146716 | -87.2691365271116 |
8901006 | sg651-20250429T0 | 1756755340 | 2025-09-01T19:35:40Z | 18.909640573602005 | -87.27789640807252 |
8901006 | sg651-20250429T0 | 1756758478 | 2025-09-01T20:27:58Z | 18.917523859055215 | -87.27584908090385 |
8901006 | sg651-20250429T0 | 1756765573 | 2025-09-01T22:26:13Z | 18.941953478603377 | -87.27493776665432 |
8901006 | sg651-20250429T0 | 1756771604 | 2025-09-02T00:06:44Z | 18.95372704845388 | -87.26904176454269 |
8901006 | sg651-20250429T0 | 1756779031 | 2025-09-02T02:10:31Z | 18.973467476544908 | -87.265723276924 |
8901006 | sg651-20250429T0 | 1756784950 | 2025-09-02T03:49:10Z | 18.985741134855946 | -87.26182530181308 |
8901006 | sg651-20250429T0 | 1756792174 | 2025-09-02T05:49:34Z | 19.0039816807034 | -87.26033777733286 |
8901006 | sg651-20250429T0 | 1756798122 | 2025-09-02T07:28:42Z | 19.01710300459052 | -87.25707440610113 |
8901006 | sg651-20250429T0 | 1756807587 | 2025-09-02T10:06:27Z | 19.039599693808224 | -87.25182565611689 |
8901006 | sg651-20250429T0 | 1756816508 | 2025-09-02T12:35:08Z | 19.05666207913298 | -87.24576063962537 |
8901006 | sg651-20250429T0 | 1756827195 | 2025-09-02T15:33:15Z | 19.08422954018995 | -87.24294611472942 |
8901006 | sg651-20250429T0 | 1756836161 | 2025-09-02T18:02:41Z | 19.105569024660774 | -87.2362140472912 |
8901006 | sg651-20250429T0 | 1756846894 | 2025-09-02T21:01:34Z | 19.135809751325677 | -87.22640596290753 |
8901006 | sg651-20250429T0 | 1756856580 | 2025-09-02T23:43:00Z | 19.157221640920476 | -87.21431466072006 |
8901006 | sg651-20250429T0 | 1756867627 | 2025-09-03T02:47:07Z | 19.19220369320305 | -87.20973443651037 |
8901006 | sg651-20250429T0 | 1756876716 | 2025-09-03T05:18:36Z | 19.219231084228664 | -87.20904863800979 |
8901006 | sg651-20250429T0 | 1756888910 | 2025-09-03T08:41:50Z | 19.263414541824314 | -87.20497840551737 |
8901006 | sg651-20250429T0 | 1756898612 | 2025-09-03T11:23:32Z | 19.29519074813382 | -87.20461502746659 |
8901006 | sg651-20250429T0 | 1756910284 | 2025-09-03T14:38:04Z | 19.340193447471762 | -87.2037015142977 |
8901006 | sg651-20250429T0 | 1756919419 | 2025-09-03T17:10:19Z | 19.37490011534517 | -87.20582716692205 |
8901006 | sg651-20250429T0 | 1756929769 | 2025-09-03T20:02:49Z | 19.423065023905366 | -87.20941052969833 |
8901006 | sg651-20250429T0 | 1756938373 | 2025-09-03T22:26:13Z | 19.45990557111542 | -87.21318489774708 |
8901006 | sg651-20250429T0 | 1756948766 | 2025-09-04T01:19:26Z | 19.478860654600368 | -87.20441840955499 |
8901006 | sg651-20250429T0 | 1756957276 | 2025-09-04T03:41:16Z | 19.46538612709313 | -87.18823247705592 |
8901006 | sg651-20250429T0 | 1756967541 | 2025-09-04T06:32:21Z | 19.55135861383543 | -87.14741650536523 |
8901006 | sg651-20250429T0 | 1756975898 | 2025-09-04T08:51:38Z | 19.567622990886672 | -87.1244401111558 |
8901006 | sg651-20250429T0 | 1756986029 | 2025-09-04T11:40:29Z | 19.5997015503504 | -87.09766083211417 |
8901006 | sg651-20250429T0 | 1756994455 | 2025-09-04T14:00:55Z | 19.61339139611075 | -87.07524834118199 |
8901006 | sg651-20250429T0 | 1757004590 | 2025-09-04T16:49:50Z | 19.643469446606893 | -87.04786767434105 |
8901006 | sg651-20250429T0 | 1757012725 | 2025-09-04T19:05:25Z | 19.659819147094307 | -87.02894766707196 |
8901006 | sg651-20250429T0 | 1757022420 | 2025-09-04T21:47:00Z | 19.683925548298706 | -87.01143221815538 |
8901006 | sg651-20250429T0 | 1757030376 | 2025-09-04T23:59:36Z | 19.690322425474463 | -86.99077232059447 |
8901006 | sg651-20250429T0 | 1757040154 | 2025-09-05T02:42:34Z | 19.71406612214404 | -86.97144117468547 |
8901006 | sg651-20250429T0 | 1757048125 | 2025-09-05T04:55:25Z | 19.721414831071154 | -86.95432377027376 |
8901006 | sg651-20250429T0 | 1757057859 | 2025-09-05T07:37:39Z | 19.744554306453132 | -86.9348490434721 |
8901006 | sg651-20250429T0 | 1757065854 | 2025-09-05T09:50:54Z | 19.75144516408918 | -86.9171282654669 |
8901006 | sg651-20250429T0 | 1757074941 | 2025-09-05T12:22:21Z | 19.77943861034711 | -86.88851192325188 |
8901006 | sg651-20250429T0 | 1757092480 | 2025-09-05T17:14:40Z | 19.804354905542016 | -86.86433837858092 |
8901006 | sg651-20250429T0 | 1757100439 | 2025-09-05T19:27:19Z | 19.81294883165225 | -86.84866332009048 |
In total, there are 45 rows of distinct combinations of the variables listed above.
All of the rows are shown above.
To change the maximum number of rows displayed, change View : Distinct Data above.
To view the related data counts,
check View : Related Data Counts above and select a value for one of the variables above.
WARNING: This may involve lots of data.
For some datasets, this may be slow.
Consider using this only when you need it and
have selected a small subset of the data.
Related Data
(Metadata)
(Refine the data subset and/or download the data)
To view the related data, change View : Related Data above.
WARNING: This may involve lots of data. For some datasets, this may be slow. Consider using this only when you need it and have selected a small subset of the data.